4.7 Article

Country-wide high-resolution vegetation height mapping with Sentinel-2

Journal

REMOTE SENSING OF ENVIRONMENT
Volume 233, Issue -, Pages -

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2019.111347

Keywords

Vegetation height mapping; Convolutional neural network; Deep learning; Sentinel-2

Funding

  1. Barry Callebaut Sourcing AG

Ask authors/readers for more resources

Sentinel-2 multi-spectral images collected over periods of several months were used to estimate vegetation height for Gabon and Switzerland. A deep convolutional neural network (CNN) was trained to extract suitable spectral and textural features from reflectance images and to regress per-pixel vegetation height. In Gabon, reference heights for training and validation were derived from airborne LiDAR measurements. In Switzerland, reference heights were taken from an existing canopy height model derived via photogrammetric surface reconstruction. The resulting maps have a mean absolute error (MAE) of 1.7 m in Switzerland and 4.3 m in Gabon (a root mean square error (RMSE) of 3.4 m and 5.6 m, respectively), and correctly estimate vegetation heights up to >50 m. They also show good qualitative agreement with existing vegetation height maps. Our work demonstrates that, given a moderate amount of reference data (i.e., 2000 km(2) in Gabon and approximate to 5800 km(2) in Switzerland), high-resolution vegetation height maps with 10 m ground sampling distance (GSD) can be derived at country scale from Sentinel-2 imagery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available