4.4 Article

Hot Spot Chemistry in Several Polymer-bound Explosives under Nanosecond Shock Conditions

Journal

PROPELLANTS EXPLOSIVES PYROTECHNICS
Volume 45, Issue 2, Pages 338-346

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/prep.201900249

Keywords

PBX; Pyrometry; Emission Spectra; PETN; RDX; TNT; TATB

Funding

  1. Department of Energy (Lawrence Livermore Laboratory) [LLNL B626875, LLNL B631306]
  2. US Army Research Office [W911NF-19-1-0037]
  3. US Air Force Office of Scientific Research [FA9550-16-1-0042]
  4. U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC5207NA27344]
  5. LLNL-LDRD Program [18-SI-004]
  6. National Science Foundation [DGE-1144245]
  7. Alfred P. Sloan Foundation's Minority Ph.D. (MPHD) Program

Ask authors/readers for more resources

Initial hot spot temperatures and temperature evolutions for 4 polymer-bound explosives under shock compression by laser-driven flyer plates at speeds from 1.5-4.5 km s(-1) are presented. A new averaging routine allows for improved signal to noise in shock compressed impactor experiments and yields temperature dynamics which are more accurate than has been previously available. The PBX formulations studied here consist of either pentaerythritol tetranitrate (PETN), 1,3,5-trinitro-1,3,5-triazinane (RDX), 2,4,6-trinitrotoluene (TNT), or 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) in a 80/20 wt.% mixture with a silicone elastomer binder. The temperature dynamics demonstrate a unique shock strength dependence for each base explosive. The initial hot spot temperature and its evolution in time are shown to be indicative of chemistry occurring within the reaction zone of the four explosives. The number density of hot spots is qualitatively inferred from the spatially-averaged emissivity and appears to increase exponentially with shock strength. An increased emissivity for formulations consisting of TNT and TATB is consistent with carbon-rich explosives and in increased hot spot volume. Qualitative conclusions about sensitivity were drawn from the initial hot spot temperature and rate at which the number of hot spots appear to grow.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available