4.6 Article

Effect of host genotype and Eimeria acervulina infection on the metabolome of meat-type chickens

Journal

PLOS ONE
Volume 14, Issue 10, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0223417

Keywords

-

Funding

  1. United State Department of Agriculture-Agricultural Research Service [58-6040-8-034]

Ask authors/readers for more resources

Objective A study was conducted to identify metabolic biochemical differences between two chicken genotypes infected with Eimeria acervulina and to ascertain the underlying mechanisms for these metabolic alterations and to further delineate genotype-specific effects during merozoite formation and oocyst shedding. Methods Fourteen day old chicks of an unimproved (ACRB) and improved (COBB) genotype were orally infected with 2.5 x 10(5) sporulated E. acervulina oocysts. At 4 and 6 day-post infection, 5 birds from each treatment group and their controls were bled for serum. Global metabolomic profiles were assessed using ultra performance liquid chromatography/tandem mass spectrometry (metabolon, Inc.,). Statistical analyses were based on analysis of variance to identify which biochemicals differed significantly between experimental groups. Pathway enrichment analysis was conducted to identify significant pathways associated with response to E. acervulina infection. Results A total of 752 metabolites were identified across genotype, treatment and time post infection. Altered fatty acid (FA) metabolism and beta-oxidation were identified as dominant metabolic signatures associated with E. acervulina infection. Key metabolite changes in FA metabolism included stearoylcarnitine, palmitoylcarnitine and linoleoylcarnitine. The infection induced changes in nucleotide metabolism and elicited inflammatory reaction as evidenced by changes in thromboxane B2, 12-HHTrE and itaconate. Conclusions Serum metabolome of two chicken genotypes infected with E. acervulina demonstrated significant changes that were treatment-, time post-infection- and genotype-dependent. Distinct metabolic signatures were identified in fatty acid, nucleotide, inflammation and oxidative stress biochemicals. Significant microbial associated product alterations are likely to be associated with malabsorption of nutrients during infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available