4.7 Article

Endophytic fungus Falciphora oryzae promotes lateral root growth by producing indole derivatives after sensing plant signals

Journal

PLANT CELL AND ENVIRONMENT
Volume 43, Issue 2, Pages 358-373

Publisher

WILEY
DOI: 10.1111/pce.13667

Keywords

Auxin; ndophyte; alciphora oryzae; Root architecture; Signal communication

Categories

Funding

  1. National Natural Science Foundation of China [31622006]
  2. National Key Research and Development Program of China [2018YFD1000800]

Ask authors/readers for more resources

The endophytic fungus Falciphora oryzae was initially isolated from wild rice (Oryza granulata) and colonizes many crop species and promotes plant growth. However, the molecular mechanisms underlying F. oryzae-mediated growth promotion are still unknown. We found that F. oryzae was able to colonize Arabidopsis thaliana. The most dramatic change after F. oryzae inoculation was observed in the root architecture, as evidenced by increased lateral root growth but reduced primary root length, similar to the effect of auxin, a significant plant growth hormone. The expression of genes responsible for auxin biosynthesis, transport, and signalling was regulated in Arabidopsis roots after F. oryzae cocultivation. Indole derivatives were detected at significantly higher levels in liquid media after cocultivation compared with separate cultivation of Arabidopsis and F. oryzae. Consistently, the expression of indole biosynthetic genes was highly upregulated in F. oryzae upon treatment with Arabidopsis exudates. Global analysis of Arabidopsis gene expression at the early stage after F. oryzae cocultivation suggested that signals were exchanged to initiate Arabidopsis-F. oryzae interactions. All these results suggest that signalling molecules from Arabidopsis roots are perceived by F. oryzae and induce the biosynthesis of indole derivatives in F. oryzae, consequently stimulating Arabidopsis lateral root growth.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available