4.5 Article

Effect of MMP-9 gene knockout on retinal vascular form and function

Journal

PHYSIOLOGICAL GENOMICS
Volume 51, Issue 12, Pages 613-622

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/physiolgenomics.00041.2019

Keywords

blindness; extracellular matrix; retina; vascular remodeling; vision loss

Funding

  1. NIH [HL-74815, HL-107640, NS-084823]

Ask authors/readers for more resources

Retinal degeneration from inherited gene mutation(s) is a common cause of blindness because of structural and functional alterations in photoreceptors. Accordingly, various approaches are being tested to ameliorate or even cure neuroretinal blinding conditions in susceptible patients by employing neuroprotective agents, gene therapeutics, optogenetics, regenerative therapies, and retinal prostheses. The FVB/NJ mouse strain inherently has a common Pde6b rd1 homozygous allele that renders its progeny blind by the time pups reach weaning age. To study the role matrix metalloproteinase-9 (MMP-9) in retinal structure and function, we examined a global MMP-9 knockout (KO) mouse model that has been engineered on the same FVB/NJ background to test the hypothesis whether lack of MMP-9 activity diminishes neuroretinal degenerative changes and thus helps improve the vision. We compared side-by-side various aspects of the ocular physiology in the wild-type (WT) C57BL/6J, FVB/NJ, and MMP-9 KO strains of mice. The results suggest that MMP-9 KO mice display subdued changes in their retinae as reflected by both structural and functional enhancement in the overall ocular neurophysiological parameters. Altogether, the findings appear to have clinical relevance for targeting conditions wherein MMPs and their overactivities are suspected to play dominant pathophysiological roles in advancing neurodegenerative retinal diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available