4.8 Article

Hydrodynamic Synchronization of Spontaneously Beating Filaments

Journal

PHYSICAL REVIEW LETTERS
Volume 123, Issue 20, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.123.208101

Keywords

-

Ask authors/readers for more resources

Using a geometric feedback model of the flagellar axoneme accounting for dynein motor kinetics, we study elastohydrodynamic phase synchronization in a pair of spontaneously beating filaments with waveforms ranging from sperm to cilia and Chlamydomonas. Our computations reveal that both in-phase and antiphase synchrony can emerge for asymmetric beats while symmetric waveforms go in phase, and elucidate the mechanism for phase slips due to biochemical noise. Model predictions agree with recent experiments and illuminate the crucial roles of hydrodynamics and mechanochemical feedback in synchronization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available