4.8 Article

General-Purpose Quantum Circuit Simulator with Projected Entangled-Pair States and the Quantum Supremacy Frontier

Journal

PHYSICAL REVIEW LETTERS
Volume 123, Issue 19, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.123.190501

Keywords

-

Funding

  1. National Natural Science Foundation of China [61632021, 11504430, 11805279, 11621091, 11690031, 11905294]
  2. Open Research Fund from State Key Laboratory of High Performance Computing of China [201901-01]
  3. China Postdoctoral Science Foundation
  4. Singapore Ministry of Education, Singapore Academic Research Fund Tier-II [MOE2018-T2-2-142]

Ask authors/readers for more resources

Recent advances on quantum computing hardware have pushed quantum computing to the verge of quantum supremacy. Here, we bring together many-body quantum physics and quantum computing by using a method for strongly interacting two-dimensional systems, the projected entangled-pair states, to realize an effective general-purpose simulator of quantum algorithms. The classical computing complexity of this simulator is directly related to the entanglement generation of the underlying quantum circuit rather than the number of qubits or gate operations. We apply our method to study random quantum circuits, which allows us to quantify precisely the memory usage and the time requirements of random quantum circuits. We demonstrate our method by computing one amplitude for a 7 x 7 lattice of qubits with depth (1 + 40 + 1) on the Tianhe-2 supercomputer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available