4.3 Article

Density Functional Theory Study of ZnIn2S4 and CdIn2S4 Polymorphs Using Full-Potential Linearized Augmented Plane Wave Method and Modified Becke-Johnson Potential

Journal

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/pssb.201900485

Keywords

bandgap; full-potential linearized augmented plane wave method; modified Becke-Johnson potential; polymorphs; ZnIn2S4

Funding

  1. Innovation Program of Shanghai Municipal Education Commission [15ZZ001]
  2. Natural Science Foundation of Shanghai [19ZR1404300]

Ask authors/readers for more resources

ZnIn2S4 and CdIn2S4 are ternary sulfide semiconductors with attracting photoelectric and catalytic properties, which are closely related with their band structure. The full-potential linearized augmented plane wave (FP-LAPW) method is used to calculate the band structures of cubic and hexagonal polymorphs of ZnIn2S4 and CdIn2S4. Among the four systems studied, the hexagonal CdIn2S4 structure with a space group P6(3)mc (No. 186) is newly predicted, and the phonon calculation shows that its structure is dynamically stable. Owing to the well-known bandgap underestimation problem of local density approximation (LDA) and generalized gradient approximation (GGA), the effects of Hubbard model and modified Becke-Johnson (mBJ) potential to band structure are investigated. The calculated outcomes of cubic ZnIn2S4 and cubic CdIn2S4 with mBJ-GGA + U are in good agreement with the experimental data. For hexagonal ZnIn2S4, it is shown that electronic states in high valence bands and low conduction bands have different components. The origin of discrepancy between the theoretical bandgap of hexagonal ZnIn2S4 and experimental value obtained from optical absorption measurement is discussed based on the spatial separation of electron and hole states and optical transition probability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available