4.8 Article

Anaerobic digestion of biowaste under extreme ammonia concentration: Identification of key microbial phylotypes

Journal

BIORESOURCE TECHNOLOGY
Volume 207, Issue -, Pages 92-101

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2016.01.124

Keywords

Ammonia; IC50; ARISA; 16S rRNA gene sequencing; Principal Component Analysis

Ask authors/readers for more resources

Ammonia inhibition represents a major operational issue for anaerobic digestion (AD). In order to get more insights into AD microbiota resistance, anaerobic batch reactors performances were investigated under a wide range of Total Ammonia Nitrogen (TAN) concentrations up to 50.0 g/L at 35 degrees C. The half maximal inhibitory concentration (IC50) value was determined to be 19.0 g/L. Microbial community dynamics revealed that above a TAN concentration of 10.0 g/L, remarkable modifications within archaeal and bacterial communities occurred. 16S rRNA gene sequencing analysis showed a gradual methanogenic shift between two OTUs from genus Methanosarcina when TAN concentration increased up to 25.0 g/L. Proportion of potential syntrophic microorganisms such as Methanoculleus and Treponema progressively raised with increasing TAN up to 10.0 and 25.0 g/L respectively, while Syntrophomonas and Ruminococcus groups declined. In 25.0 g/L assays, Caldicoprobacter were dominant. This study highlights the emergence of AD key phylotypes at extreme ammonia concentrations. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available