4.6 Article

Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network

Journal

ORAL DISEASES
Volume 26, Issue 1, Pages 152-158

Publisher

WILEY
DOI: 10.1111/odi.13223

Keywords

cysts; deep learning; odontogenic cysts; supervised machine learning

Funding

  1. Wonkwang University

Ask authors/readers for more resources

Objectives The aim of the current study was to evaluate the detection and diagnosis of three types of odontogenic cystic lesions (OCLs)-odontogenic keratocysts, dentigerous cysts, and periapical cysts-using dental panoramic radiography and cone beam computed tomographic (CBCT) images based on a deep convolutional neural network (CNN). Methods The GoogLeNet Inception-v3 architecture was used to enhance the overall performance of the detection and diagnosis of OCLs based on transfer learning. Diagnostic indices (area under the ROC curve [AUC], sensitivity, specificity, and confusion matrix with and without normalization) were calculated and compared between pretrained models using panoramic and CBCT images. Results The pretrained model using CBCT images showed good diagnostic performance (AUC = 0.914, sensitivity = 96.1%, specificity = 77.1%), which was significantly greater than that achieved by other models using panoramic images (AUC = 0.847, sensitivity = 88.2%, specificity = 77.0%) (p = .014). Conclusions This study demonstrated that panoramic and CBCT image datasets, comprising three types of odontogenic OCLs, are effectively detected and diagnosed based on the deep CNN architecture. In particular, we found that the deep CNN architecture trained with CBCT images achieved higher diagnostic performance than that trained with panoramic images.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available