4.7 Article

Integrating hydrogen deuterium exchange mass spectrometry with molecular dynamics simulations to probe lipid-modulated conformational changes in membrane proteins

Journal

NATURE PROTOCOLS
Volume 14, Issue 11, Pages 3183-3204

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41596-019-0219-6

Keywords

-

Funding

  1. Wellcome Trust [109854/Z/15/Z]
  2. King's Health Partners R&D Challenge Fund through the MRC [MC_PC_15031]
  3. FRS-FNRS [1.B.261.19F]
  4. National Institute of General Medical Sciences of the National Institutes of Health [U54-GM087519, P41-GM104601, R01-GM123455]
  5. London Interdisciplinary Biosciences Consortium (LIDo) BBSRC Doctoral Training Partnership [BB/M009513/1]
  6. Extreme Science and Engineering Discovery Environment [TG-MCA06N060]
  7. MRC [MC_PC_15031] Funding Source: UKRI

Ask authors/readers for more resources

Biological membranes define the boundaries of cells and are composed primarily of phospholipids and membrane proteins. It has become increasingly evident that direct interactions of membrane proteins with their surrounding lipids play key roles in regulating both protein conformations and function. However, the exact nature and structural consequences of these interactions remain difficult to track at the molecular level. Here, we present a protocol that specifically addresses this challenge, First, hydrogen-deuterium exchange mass spectrometry (HDX-MS) of membrane proteins incorporated into nanodiscs of controlled lipid composition is used to obtain information on the lipid species that are involved in modulating the conformational changes in the membrane protein. Then molecular dynamics (MD) simulations in lipid bilayers are used to pinpoint likely lipid-protein interactions, which can be tested experimentally using HDX-MS. By bringing together the MD predictions with the conformational readouts from HDX-MS, we have uncovered key lipid-protein interactions implicated in stabilizing important functional conformations. This protocol can be applied to virtually any integral membrane protein amenable to classic biophysical studies and for which a near-atomic-resolution structure or homology model is available. This protocol takes similar to 4 d to complete, excluding the time for data analysis and MD simulations, which depends on the size of the protein under investigation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available