4.7 Article

Prediction of galaxy halo masses in SDSS DR7 via a machine learning approach

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 490, Issue 2, Pages 2367-2379

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stz2775

Keywords

galaxies: clusters: general; galaxies: groups: general; cosmology: observations; large-scale structure of Universe

Funding

  1. NSF
  2. Vanderbilt Advanced Computing Center for Research and Education (ACCRE)
  3. National Science Foundation (NSF) [AST-1151650, CE170100013]
  4. Alfred P. Sloan Foundation
  5. National Science Foundation
  6. U.S. Department of Energy
  7. National Aeronautics and Space Administration
  8. Japanese Monbukagakusho
  9. Max Planck Society
  10. Higher Education Funding Council for England
  11. American Museum of Natural History
  12. Astrophysical Institute Potsdam
  13. University of Basel
  14. University of Cambridge
  15. Case Western Reserve University, University of Chicago
  16. Drexel University
  17. Institute for Advanced Study
  18. Japan Participation Group
  19. Johns Hopkins University
  20. Joint Institute for Nuclear Astrophysics
  21. Kavli Institute for Particle Astrophysics and Cosmology
  22. Chinese Academy of Sciences (LAMOST)
  23. Los Alamos National Laboratory
  24. Max-Planck-Institute for Astronomy (MPIA)
  25. Max-Planck-Institute for Astrophysics (MPA), New Mexico State University
  26. Ohio State University, University of Pittsburgh, University of Portsmouth
  27. Princeton University
  28. United States Naval Observatory

Ask authors/readers for more resources

We present a machine learning (ML) approach for the prediction of galaxies' dark matter halo masses which achieves an improved performance over conventional methods. We train three ML algorithms (XGBoost, random forests, and neural network) to predict halo masses using a set of synthetic galaxy catalogues that are built by populating dark matter haloes in N-body simulations with galaxies and that match both the clustering and the joint distributions of properties of galaxies in the Sloan Digital Sky Survey (SDSS). We explore the correlation of different galaxy- and group-related properties with halo mass, and extract the set of nine features that contribute the most to the prediction of halo mass. We find that mass predictions from the ML algorithms are more accurate than those from halo abundance matching (HAM) or dynamical mass estimates (DYN). Since the danger of this approach is that our training data might not accurately represent the real Universe, we explore the effect of testing the model on synthetic catalogues built with different assumptions than the ones used in the training phase. We test a variety of models with different ways of populating dark matter haloes, such as adding velocity bias for satellite galaxies. We determine that, though training and testing on different data can lead to systematic errors in predicted masses, the ML approach still yields substantially better masses than either HAM or DYN. Finally, we apply the trained model to a galaxy and group catalogue from the SDSS DR7 and present the resulting halo masses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available