4.3 Article

Nonlinear Sideband Thermocapillary Instability of a Thin Film Coating the Inside of a Thick Walled Cylinder with Finite Thermal Conductivity in the Absence of Gravity

Journal

MICROGRAVITY SCIENCE AND TECHNOLOGY
Volume 32, Issue 2, Pages 105-117

Publisher

SPRINGER
DOI: 10.1007/s12217-019-09751-5

Keywords

Cylindrical thin liquid film; Marangoni convection; Thermocapillary convection; Nonlinear sideband instability; Thick wall; Wall finite thermal conductivity

Ask authors/readers for more resources

The nonlinear sideband thermocapillary instability of a thin liquid film coating the inside of a heated cylinder in the absence of gravity is investigated. It is shown that for a newtonian fluid and under the approximation of small wavenumber and large radius of the cylinder, the axial and all azimuthal modes with wavenumber k(max) > 0 have the same linear maximum growth rate, in the same way as in a previous papers for flow outside the cylinder. Here, this indeterminacy of the linear problem is resolved nonlinearly looking for the parameters' range where the axial mode prevails and where it is unstable against the first azimuthal mode of thermocapillary instability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available