4.5 Article

BamA POTRA Domain Interacts with a Native Lipid Membrane Surface

Journal

BIOPHYSICAL JOURNAL
Volume 110, Issue 12, Pages 2698-2709

Publisher

CELL PRESS
DOI: 10.1016/j.bpj.2016.05.010

Keywords

-

Categories

Funding

  1. National Institutes of Health (NIH) [U54GM087519, R01AI080709, R01GM079440]
  2. National Science Foundation (NSF) [MCB-1516154, DBI-1145987, MCB1412108]
  3. National Science Foundation [ACI-1053575]
  4. Direct For Biological Sciences
  5. Div Of Biological Infrastructure [1145987] Funding Source: National Science Foundation
  6. Direct For Biological Sciences
  7. Div Of Molecular and Cellular Bioscience [1412108, 1516154] Funding Source: National Science Foundation
  8. Direct For Biological Sciences
  9. Div Of Molecular and Cellular Bioscience [1727508] Funding Source: National Science Foundation

Ask authors/readers for more resources

The outer membrane of Gram-negative bacteria is an asymmetric membrane with lipopolysaccharides on the external leaflet and phospholipids on the periplasmic leaflet. This outer membrane contains mainly beta-barrel transmembrane proteins and lipidated periplasmic proteins (lipoproteins). The multisubunit protein beta-barrel assembly machine (BAM) catalyzes the insertion and folding of the beta-barrel proteins into this membrane. In Escherichia coli, the BAM complex consists of five subunits, a core transmembrane beta-barrel with a long periplasmic domain (BamA) and four lipoproteins (BamB/C/D/E). The BamA periplasmic domain is composed of five globular subdomains in tandem called POTRA motifs that are key to BAM complex formation and interaction with the substrate beta-barrel proteins. The BAM complex is believed to undergo conformational cycling while facilitating insertion of client proteins into the outer membrane. Reports describing variable conformations and dynamics of the periplasmic POTRA domain have been published. Therefore, elucidation of the conformational dynamics of the POTRA domain in full-length BamA is important to understand the function of this molecular complex. Using molecular dynamics simulations, we present evidence that the conformational flexibility of the POTRA domain is modulated by binding to the periplasmic surface of a native lipid membrane. Furthermore, membrane binding of the POTRA domain is compatible with both BamB and BamD binding, suggesting that conformational selection of different POTRA domain conformations may be involved in the mechanism of BAM-facilitated insertion of outer membrane beta-barrel proteins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available