4.7 Article

Strain heterogeneity and micro-damage nucleation under tensile stresses in an Mg-5Al-3Ca alloy with an intermetallic skeleton

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2019.138414

Keywords

mu-DIC; Strain heterogeneity; Euler number; mu-Cracks; Dual phase Mg-Al-Ca alloy; High temperature tensile behavior

Funding

  1. University of Engineering and Technology, Lahore Pakistan
  2. German Research Foundation (DFG) [TRR 188]

Ask authors/readers for more resources

Strain heterogeneity at the microstructural level plays a vital role in the deformation and fracture behaviour of dual or multi-phase materials. In the present work, the strain heterogeneity, localisation and partitioning arising at the sub-micron scale during elevated temperature (170 degrees C) tensile deformation of an Mg-5Al-3Ca alloy was investigated using quasi in-situ experiments. The results reveal that the strain is mainly carried by the alpha-Mg phase, while the intermetallic Laves phase plays a critical role in that strain concentrations build up at the alpha-Mg matrix and Laves phase interfaces, hence, reducing the overall deformability of the alloy. In quasi in-situ and bulk material analysis at elevated temperature, cracks were observed to nucleate in the Laves phase, at i) the intersection points of slip lines in the alpha-Mg matrix with the Laves phase and ii) the twin intersections with alpha-Mg/Laves phase interfaces and iii) twin transmissions across alpha-Mg/Laves phase interfaces. Euler number analysis has shown that the (inter-)connectivity of the Laves phase decreases with deformation. Finally, cracks grow preferentially along the Laves phases until the material fractures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available