4.3 Article

Papaver somniferum L. mediated novel bioinspired lead oxide (PbO) and iron oxide (Fe2O3) nanoparticles: In-vitro biological applications, biocompatibility and their potential towards HepG2 cell line

Publisher

ELSEVIER
DOI: 10.1016/j.msec.2019.109740

Keywords

Lead oxide NPs; Iron oxide NPs; Papaver somniferum L.; Biosynthesized; Anticancer

Ask authors/readers for more resources

To overcome the disadvantages of chemical and physical methods, phyto-fabricated nanoparticles attained great attention due to their multifarious applications. Here we successfully demonstrated Papaver somniferum L. mediated green synthesis of lead oxide (PbO) and iron oxide (Fe2O3) nanoparticles. Characterization of nano particles involved techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and energy dispersive X-ray (EDX) associated with scanning electron microscopy (SEM). XRD analysis confirmed the phase identification and crystalline nature. FTIR analysis confirmed the capping of nanoparticles by plants' phytochemicals. SEM revealed morphological features of PbO and Fe2O3 with size of nanoparticles being 23 +/- 11 nm and 38 +/- 13 nm, respectively. The elemental composition of the nanoparticles was confirmed by EDX. Both bacterial and fungal isolates showed susceptibility towards PbO and Fe2O3 NPs. Both the NPs also showed considerable total antioxidant potential, free radical scavenging potential and reducing power. Insignificant level of alpha-amylase for both NPs was observed. Fe2O3 NPs showed superior biocompatibility with human RBCs as compared to PbO whereas PbO showed more potent anti-cancer activity as compared to Fe2O3 NPs. Overall our study concluded that both NPs played vital role in multiple biological assays however, extensive research focused on cytotoxic evaluation of NPs in-vivo is required.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available