4.7 Article

K092A and K092B, Two Peptides Isolated from the Dogfish (Scyliorhinus canicula L.), with Potential Antineoplastic Activity Against Human Prostate and Breast Cancer Cells

Journal

MARINE DRUGS
Volume 17, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/md17120672

Keywords

cancer; antineoplastic; ZR-75-1; MDA-Pca-2b; marine peptide; lesser spotted dogfish (Scyliorhinus canicula)

Funding

  1. Conseil Regional de Basse-Normandie
  2. Fonds Europeen de Developpement Regional
  3. ANRT
  4. Kelia
  5. Kelia (CIFRE grant)

Ask authors/readers for more resources

Cancer therapy is currently a major challenge within the research community, especially in reducing the side effects of treatments and to develop new specific strategies against cancers that still have a poor prognosis. In this context, alternative strategies using biotechnologies, such as marine peptides, have been developed based on their promise of effectivity associated with a low toxicity for healthy cells. The purpose of the present paper is to investigate the active mechanism of two peptides that were isolated from the epigonal tissue of the lesser spotted dogfish Scyliorhinus canicula L., identified NFDTDEQALEDVFSKYG (K092A) and EAPPEAAEEDEW (K092B) on the in vitro growth inhibition of ZR-75-1 mammary carcinoma cells and MDA-Pca-2b prostate cancer cells. The effects of the peptides on cell proliferation and cell death mechanisms were studied by the flow cytometry and immunofluorescence microscopy approaches. The results have shown the onset of both K092A- and K092B-induced early cytoskeleton changes, and then cell cycle perturbations followed by non-apoptotic cell death. Moreover, impedance perturbation and plasma membrane perforation in ZR-75-1 K092A-treated cell cultures and autophagy inhibition in MDA-Pca-2b K092B-treated cells have been observed. In conclusion, these two bioactive peptides from dogfish exhibit antineoplastic activity on the human prostate and breast cancer cells in vitro.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available