4.3 Article

Direct Solvent-Free Modification of the Inner Wall of the Microchip for Rapid DNA Extraction with Enhanced Capturing Efficiency

Journal

MACROMOLECULAR RESEARCH
Volume 28, Issue 3, Pages 249-256

Publisher

POLYMER SOC KOREA
DOI: 10.1007/s13233-020-8028-x

Keywords

nucleic acid extraction; positively-charged polymers; microfluidics; initiated chemical vapor deposition (iCVD); pathogen detection

Funding

  1. National Research Foundation of Korea (NRF) - Ministry of Science and ICT, Republic of Korea [2017R1A2B3007806]
  2. National Research Foundation of Korea (NRF) - Korea government (MSIP) [2015M1A2A2056605]
  3. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT & Future Planning [2018R1C1B3001553]
  4. Nano Open Innovation Lab Cooperation Project of NNFC
  5. National Research Foundation of Korea [2015M1A2A2056605, 2018R1C1B3001553] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Nucleic acid (NA) extraction and purification are one of the crucial steps for NA-based molecular diagnosis. However, the currently developed methods are still suffering from many issues including long process time, complicated steps, requirement of trained personnel and potential inhibition caused by chaotropic agents and/ or residual reagents. Herein, a surface-modified NA extraction microchip (SNC) is newly fabricated by introducing poly(2-dimethylaminomethyl styrene) (pDMAMS) film engaged directly on the microchip surface via initiated chemical vapor deposition (iCVD) process. The positively charged SNC inner surface could directly capture the negatively charged NA efficiently and its performance is confirmed by fluorescence microscopy and X-ray photoelectron spectroscopy. The developed SNC exhibits the deoxyribonucleic acid (DNA) capture efficiency higher than 92% regardless of initial DNA concentration in range of 20 ng/mu L to 0.01 ng/mu L. With this versatile DNA-capturing surface, the genomic DNAs of Escherichia Coli O157:H7 (E. coli O157:H7) is successfully extracted directly from cell lysate in the SNC with higher than 90% of efficiency within 30 min. The extraction time can be reduced to at least of 10 min maintaining extraction efficiency higher than 50%. Furthermore, the genomic DNAs are directly extracted using the SNC without loss from various real samples including juice, milk and blood serum. The proposed SNC enables us to perform an one-step NA extraction for molecular diagnosis and has the potential to be integrated into a micro-total analysis in the fields of point-of-care diagnosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available