4.5 Article

Green synthesis and physiochemical characterization of nickel oxide nanoparticles: Interaction studies with Calf thymus DNA

Journal

LUMINESCENCE
Volume 35, Issue 2, Pages 178-186

Publisher

WILEY
DOI: 10.1002/bio.3709

Keywords

DNA-nanoparticle interaction; green synthesis; nanobiosensors; nickel oxide nanoparticles; nucleic acid biosensors

Funding

  1. CSIR UGC JRF [F.16-6 (DEC. 2016)/2017(NET)]
  2. University of Delhi, Delhi

Ask authors/readers for more resources

One of the most promising applications of nanomaterials is that of nanobiosensors, using biomolecules such as nucleic acids as receptors. This study aimed to synthesize nickel oxide nanoparticles (NiO NPs) by an environmentally friendly green synthesis, using the extract of the herb Coriandrum sativum (coriander). The synthesized NPs were characterized using UV-Visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photon spectroscopy, field emission scanning electron microscopy coupled with energy dispersive spectroscopy, dynamic light scattering, zeta potential and transmission electron microscopy. All results confirmed the synthesis of pure, spherical, positively charged NiO NPs of around 95 nm in diameter with prominent hydroxyl groups attached to the surface. Furthermore, interaction studies of synthesized NiO NPs with calf thymus DNA (CT DNA) were performed using UV-Visible spectroscopy, UV-thermal melting, circular dichroism, and fluorescence spectroscopy. CT DNA served as a substitute for nucleic acid biosensors. All experimental studies indicated that the NiO NPs bound electrostatically with CT DNA. These studies may facilitate exploring the potential of NiO NP-nucleic acid conjugated materials to be used as nanobiosensors for various applications, especially in pharmacological, epidemiological, and environmental diagnostic applications, and in detection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available