4.6 Article

Amphiphilic Polypeptoids Rupture Vesicle Bilayers To Form Peptoid-Lipid Fragments Effective in Enhancing Hydrophobic Drug Delivery

Journal

LANGMUIR
Volume 35, Issue 47, Pages 15335-15343

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.9b03322

Keywords

-

Funding

  1. U.S. Department of Energy under EPSCoR grant [DE-SC0012432]
  2. National Science Foundation [1805608]
  3. Div Of Chem, Bioeng, Env, & Transp Sys
  4. Directorate For Engineering [1805608] Funding Source: National Science Foundation

Ask authors/readers for more resources

Peptoids are highly biocompatible pseudopeptidic polyglycines with designable substituents on the nitrogen atoms. The therapeutic and drug-carrying potential of these materials requires a fundamental understanding of their interactions with lipid bilayers. In this work, we use amphiphilic polypeptoids with up to 100 monomeric units where a significant fraction (26%) of the nitrogen atoms are functionalized with decyl groups (hydrophobes) that insert into the lipid bilayer through the hydrophobic effect. These hydrophobically modified polypeptoids (HMPs) insert their hydrophobes into lipid bilayers creating instabilities that lead to the rupture of vesicles. At low HMP concentrations, such rupture leads to the creation of large fragments which remarkably anchor to intact vesicles through the hydrophobic effect. At high HMP concentrations, all vesicles rupture to smaller HMP-lipid fragments of the order of 10 nm. We show that the technique for such nanoscale polymer-lipid fragments can be exploited to sustain highly hydrophobic drug species in solution. Using the kinase inhibitor, Sorafenib as a model drug, it is shown that HMP-lipid fragments containing the drug can efficiently enter a hepatocellular carcinoma cell line (Huh 7.5), indicating the use of such fragments as drug delivery nanocarriers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available