4.6 Article

Biomimetic Self-Renewal Polymer Brushes with Protein Resistance Inspired by Fish Skin

Journal

LANGMUIR
Volume 35, Issue 45, Pages 14596-14602

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.9b02838

Keywords

-

Funding

  1. National Natural Science Foundation of China [51673074, 31671491, 81772002]
  2. China Postdoctoral Science Foundation [2017M612719]
  3. Natural Science Foundation of Guangdong Province [2018A030310415]
  4. Basic Research Foundation of Shenzhen [JCYJ20170817102634964]

Ask authors/readers for more resources

Inspired by fish skin, biomimetic self-renewal poly[(ethylene oxide)-co-(ethylene carbonate)] (PEOC) brushes with protein resistance had been prepared via surface-initiated ring-opening polymerization (ROP). The results of hydrolytic degradation indicated that the PEOC brushes could degrade in artificial seawater. Ellipsometry, X-ray photoelectron spectrometry, and contact angle results demonstrated that the PEOC brushes degrade uniformly. By using a quartz crystal microbalance with dissipation, we studied the protein adsorption on the surfaces in artificial seawater at different degradation times. After 24, 48, 96, and 168 h of degradation, the PEOC surfaces showed nearly zero Delta f and Delta D for bovine serum albumin, lysozyme, and fibrinogen. More importantly, there was a notably lower density of microorganisms adhered to the surface modified with PEOC compared with that of the surface without PEOC in natural seawater. The current study showed that the PEOC brushes exhibit a self-renewal property with persistent protein resistance and prevent the adhesion of microorganisms. Such a biomimetic polymer had a great potential in marine antibiofouling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available