4.6 Article

Temperature sensitivity of decomposition of soil organic matter fractions increases with their turnover time

Journal

LAND DEGRADATION & DEVELOPMENT
Volume 31, Issue 5, Pages 632-645

Publisher

WILEY
DOI: 10.1002/ldr.3477

Keywords

C-14 isotope; global warming; SOC decomposition; soil quality; temperature sensitivity (Q(10))

Funding

  1. National Natural Science Foundation of China [41772171]
  2. RUDN University program 5-100
  3. Government Program of Competitive Growth of Kazan Federal University

Ask authors/readers for more resources

Soil organic carbon (SOC) is an indicator of soil fertility. Global warming accelerates SOC decomposition, consequently, resulting in land degradation. Characterization of the response of SOC decomposition to temperature is important for predicting land development. A simulation model based on temperature sensitivity (Q(10)) of SOC decomposition has been used to predict SOC response to climate warming. However, uncertain Q(10) leads to substantial uncertainties in the predictions. A major uncertainty comes from the interference of rainfall. To minimize this interference, we sampled surface (0-5 cm) soils along an isohyet across a temperature gradient in the Qinghai-Tibetan Plateau. The Q(10) of bulk soil and the four soil fractions, such as light fraction (LightF), particulate organic matter (POM), hydrolyzable fraction (HydrolysF), and recalcitrant fraction (RecalcitF), were studied by C-14 dating. Turnover time follows the order: LightF < POM < bulk soil < HydrolysF < RecalcitF. The Q(10) follows the order: LightF (1.0) = POM (1.0) < HydrolysF (3.63) < bulk soil (5.93) < RecalcitF (7.46). This indicates that stable fractions are much more sensitive to temperature than labile fractions. We also suggest that protection mechanisms rather than molecular composition regulate SOC turnover. A new concept 'protection sensitivity' of SOC decomposition was proposed. Protection sensitivity relates to protection type and primarily controls Q(10) variation. A simulation model based on the Q(10) of individual fractions predicted SOC change and land development in the Qinghai-Tibetan Plateau in the next 100 years much effectively as compared to simulations based on one-pool model (Q(10) = 2) or bulk soil (Q(10) = 5.93).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available