4.6 Article

Hydrogen-deuterium exchange mass spectrometry highlights conformational changes induced by factor XI activation and binding of factor IX to factor XIa

Journal

JOURNAL OF THROMBOSIS AND HAEMOSTASIS
Volume 17, Issue 12, Pages 2047-2055

Publisher

WILEY
DOI: 10.1111/jth.14632

Keywords

factor IX; factor XI; factor XIa; hemostasis; mass spectrometry

Ask authors/readers for more resources

Background Factor XI (FXI) is a zymogen in the coagulation pathway that, once activated, promotes haemostasis by activating factor IX (FIX). Substitution studies using apple domains of the homologous protein prekallikrein have identified that FIX binds to the apple 3 domain of FXI. However, the molecular changes upon activation of FXI or binding of FIX to FXIa have remained largely unresolved. Objectives This study aimed to gain more insight in the FXI activation mechanism by identifying the molecular differences between FXI and FXIa, and in the conformational changes in FXIa induced by binding of FIX. Methods Hydrogen-deuterium exchange mass spectrometry was performed on FXI, FXIa, and FXIa in complex with FIX. Results Both activation and binding to FIX induced conformational changes at the interface between the catalytic domain and the apple domains of FXI(a)-more specifically at the loops connecting the apple domains. Moreover, introduction of FIX uniquely induced a reduction of deuterium uptake in the beginning of the apple 3 domain. Conclusions We propose that the conformational changes of the catalytic domain upon activation increase the accessibility to the apple 3 domain to enable FIX binding. Moreover, our HDX MS results support the location of the proposed FIX binding site at the beginning of the apple 3 domain and suggest a mediating role in FIX binding for both loops adjacent to the apple 3 domain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available