4.8 Article

Stable Ultraconcentrated and Ultradilute Colloids of CsPbX3 (X = Cl, Br) Nanocrystals Using Natural Lecithin as a Capping Ligand

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 141, Issue 50, Pages 19839-19849

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.9b09969

Keywords

-

Funding

  1. Swiss Federal Commission for Technology and Innovation (CTI) [18614.1 PFNM-NM]
  2. European Union through the FP7 (ERC Starting Grant NANOSOLID) [306733]
  3. European Union through the Horizon 2020 Research and Innovation Programme [819740]
  4. Swiss National Science Foundation (SNSF) [200020_185062]
  5. EU-H2020 Research and Innovation Programme [654360]
  6. Swiss National Science Foundation (SNF) [200020_185062] Funding Source: Swiss National Science Foundation (SNF)

Ask authors/readers for more resources

Attaining thermodynamic stability of colloids in a broad range of concentrations has long been a major thrust in the field of colloidal ligand-capped semiconductor nanocrystals (NCs). This challenge is particularly pressing for the novel NCs of cesium lead halide perovskites (CsPbX3; X = Cl, Br) owing to their highly dynamic and labile surfaces. Herein, we demonstrate that soy lecithin, a mass-produced natural phospholipid, serves as a tightly binding surface-capping ligand suited for a high-reaction yield synthesis of CsPbX3 NCs (6-10 nm) and allowing for long-term retention of the colloidal and structural integrity of CsPbX3 NCs in a broad range of concentrations-from a few ng/mL to >400 mg/mL (inorganic core mass). The high colloidal stability achieved with this long-chain zwitterionic ligand can be rationalized with the Alexander-De Gennes model that considers the increased particle-particle repulsion due to branched chains and ligand polydispersity. The versatility and immense practical utility of such colloids is showcased by the single NC spectroscopy on ultradilute samples and, conversely, by obtaining micrometer-thick, optically homogeneous dense NC films in a single spin-coating step from ultraconcentrated colloids.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available