4.8 Article

Histidine-Specific Peptide Modification via Visible-Light-Promoted C-H Alkylation

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 141, Issue 45, Pages 18230-18237

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.9b09127

Keywords

-

Funding

  1. National Natural Science Foundation of China [21672146, 91753102, 21907064]
  2. Natural Science Foundation of Shanghai [17JC1405300]

Ask authors/readers for more resources

Histidine (His) carries a unique heteroaromatic imidazole side chain and plays irreplaceable functional roles in peptides and proteins. Existing strategies for site-selective histidine modification predominantly rely on the N-substitution reactions of the moderately nucleophilic imidazole group, which inherently suffers from the interferences from lysine and cysteine residues. Chemoselective modification of histidine remains one of the most difficult challenges in peptide chemistry. Herein, we report peptide modification via radical-mediated chemoselective C-H alkylation of histidine using C-4-alkyl-1,4-dihydropyridine (DHP) reagents under visible-light-promoted conditions. The method exploits the electrophilic reactivity of the imidazole ring via a Minisci-type reaction pathway. This method exhibits an exceptionally broad scope for both peptides and DHP alkylation reagents. Its utility has been demonstrated in a series of important peptide drugs, complex natural products, and a small protein. Distinct from N-substitution reactions, the unsubstituted nitrogen groups of the modified imidazole ring are conserved in the C-H alkylated products.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available