4.8 Article

Water/Oxygen Circulation-Based Biophotoelectrochemical System for Solar Energy Storage and Release

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 141, Issue 41, Pages 16416-16421

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.9b08046

Keywords

-

Funding

  1. National Natural Science Foundation of China [21675151]
  2. Ministry of Science and Technology of China [2016YFA0203203]

Ask authors/readers for more resources

Fabricating an artificial photoelectrochemical device to provide electric power on demand is highly desirable but remains a challenge. In response to the intermittent nature of sunlight, we develop a water/oxygen circulation-based biophotoelectrochemical system (BPECS) by integrating a polypyrrole (PPy) capacitor electrode into a photobiofuel cell (PBFC). Unlike traditional PEC devices, the modular and integrated system design of BPECS can not only improve compatibility among PEC cells, BFCs, and capacitor devices, but also offers a feasible way for tackling the intermittent nature of sunlight. In this system, the molecules of water and oxygen can form a self-circulation, thus making this device intrinsically safe and cost-effective. Through the alternate two-step energy conversion (i.e., solar-to-chemical/electric and chemical-to-electric), this conceptual model obtains maximum power output densities of 0.34 +/- 0.01 and 0.19 +/- 0.02 mW cm(-2) in light and dark conditions, respectively, and presents stable long-term cycling performance for solar energy storage and release. Our results demonstrate that such a BPECS achieves high-effective solar energy utilization, which carries great significance to the development of artificial BPECS and provides research opportunities to explore a deployable route for grid-scale photovoltaic energy storage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available