4.8 Article

Generalized Many-Body Expanded Full Configuration Interaction Theory

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 10, Issue 24, Pages 7910-7915

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.9b02968

Keywords

-

Funding

  1. University of Bristol
  2. Alexander von Humboldt Foundation
  3. Independent Research Fund Denmark

Ask authors/readers for more resources

Facilitated by a rigorous partitioning of a molecular system's orbital basis into two fundamental subspaces-a reference and an expansion space, both with orbitals of unspecified occupancy-we generalize our recently introduced many-body expanded full configuration interaction (MBE-FCI) method to allow for electron-rich model and molecular systems dominated by both weak and strong correlation to be addressed. By employing minimal or even empty reference spaces, we show through calculations on the one-dimensional Hubbard model with up to 46 lattice sites, the chromium dimer, and the benzene molecule how near-exact results may be obtained in an entirely unbiased manner for chemical and physical problems of not only academic but also applied chemical interest. Given the massive parallelism and overall accuracy of the resulting method, we argue that generalized MBE-FCI theory possesses an immense potential to yield near-exact correlation energies for molecular systems of unprecedented size, composition, and complexity in the years to come.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available