4.5 Article

Relation of Colloidal and Conformational Stabilities to Aggregate Formation in a Monoclonal Antibody

Journal

JOURNAL OF PHARMACEUTICAL SCIENCES
Volume 109, Issue 1, Pages 308-315

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.xphs.2019.10.038

Keywords

antibody drugs; protein aggregation; protein formulation; protein structure; mass spectrometry (MS)

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan [17H03975]
  2. Japan Agency for Medical Research and Development [18ae0101066h0001, 19ak0101074h1503]
  3. Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research [BINDS]) from AMED
  4. Hokkaido University, Global Facility Center (GFC), Pharma Science Open Unit (PSOU) - MEXT
  5. Grants-in-Aid for Scientific Research [17H03975] Funding Source: KAKEN

Ask authors/readers for more resources

Aggregation of therapeutic monoclonal antibodies has a potential risk of immunogenicity, requiring minimization of aggregate formation. We have developed a fitting formula for antibody aggregation at 40 degrees C based on physicochemical parameters, including colloidal and conformational stabilities. An IgG1 monoclonal antibody, MAb-T, was formulated in 24 combinations of different buffer types and pH with or without sodium chloride. The fitting formula for monomer loss was successfully established by nonlinear regression analysis of the results from accelerated stability testing. Calculated monomer fraction values by the fitting formula were strongly correlated with experimental values (R-2 = 0.92). The model includes secondary virial coefficient, B-22, as the representative parameter of colloidal stability, and aggregation temperature, T-agg, representing conformational stability. Then, we examined charge state, conformational flexibility, and thermal unfolding profile of MAb-T to clarify the molecular basis for the different aggregation propensities in sodium acetate buffer and in sodium citrate buffer at the same pH and buffer concentration. We concluded that the accumulation of citrate anions on the surface of MAb-T is the primary source of the less colloidal and conformational stabilities, resulting in the higher aggregation propensity in sodium citrate buffer. (C) 2020 American Pharmacists Association (R). Published by Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available