4.5 Article

Control of Antibody Impurities Induced by Riboflavin in Culture Media During Production

Journal

JOURNAL OF PHARMACEUTICAL SCIENCES
Volume 109, Issue 1, Pages 566-575

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.xphs.2019.10.039

Keywords

monoclonal antibody(s); reactive oxygen species; photodegradation; cell culture; chromatography; protein structure(s)

Ask authors/readers for more resources

During the manufacturing of protein biologics, product variability during cell culture production and harvest needs to be actively controlled and monitored to maintain acceptable product quality. To a large degree, variants that have previously been described are covalent in nature and are easily analyzed by a variety of techniques. Here, we describe a noncovalent post translational modification of recombinantly expressed antibodies, containing variable domain tryptophans, that are exposed to culture media components and ambient laboratory light. The modified species, designated as conformer, can be monitored by hydrophobic interaction chromatography and often exhibits reduced potency. We studied conformer formation and identified key elements driving its accelerated growth using an IgG2 monoclonal antibody. Conformer is a result of a noncovalent interaction of the antibody with riboflavin, an essential vitamin added to many production cell culture formulations. Chemical and physical factors that influence the impact of riboflavin are identified, and methods for process control of this product quality attribute are addressed in order to prevent loss of antibody potency and potential safety issues. Identifying therapeutic antibody drug candidates with the potential to form conformers can be performed early in development to avoid this undesirable product quality propensity. (C) 2020 American Pharmacists Association. Published by Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available