4.5 Article

Osmotic Swelling Responses Are Conserved Across Cartilaginous Tissues With Varied Sulfated-Glycosaminoglycan Contents

Journal

JOURNAL OF ORTHOPAEDIC RESEARCH
Volume 38, Issue 4, Pages 785-792

Publisher

WILEY
DOI: 10.1002/jor.24521

Keywords

cartilage mechanics; meniscus mechanics; osmotic swelling; sGAG; confined compression

Categories

Funding

  1. National Science Foundation
  2. Stanford Bio-X Fellowship, an Achievement Rewards for College Scientists Fellowship
  3. Sloan PhD Fellowship

Ask authors/readers for more resources

Determining the influence of tissue composition on the osmotic swelling stress of articular cartilage and meniscus fibrocartilage is important to enhance our understanding of physiology and disease. This osmotic swelling stress is critical for the load-bearing capability of both tissues and results in part due to the interactions between the negatively charged sulfated glycosaminoglycan (sGAG) chains and the ionic interstitial fluid. Changes in sGAG content, as those occurring during the progression of degenerative joint disease, alter such interactions. Here, we compare the time-varying effects of altered osmotic environments on the confined compression swelling behavior of bovine tissues spanning a range of sGAG concentrations: juvenile articular cartilage, juvenile and adult meniscus, and juvenile cartilage enzymatically degraded to reduce its sGAG content. The transient response to changes in bath conditions was evaluated for explants assigned to one of three compressive offsets (5%, 10%, or 15% strain) and one of three bath conditions (0.1X, 1X, or 10X phosphate-buffered saline). Our results show that relative responses to alterations to the osmotic environment are consistent across native tissues but differ for degraded juvenile cartilage, demonstrating that changes in sGAG do not completely recapitulate the native swelling behaviors. Further, we found a strong correlation between aggregate modulus and sGAG/collagen, as well as between sGAG and collagen contents across native tissue types, suggesting some conservation of composition-function relationships across a range of tissue types with varying sGAG concentrations. (c) 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available