4.5 Article

Microstructure and Mechanical Properties of Ni-based Superalloy K418 Produced by the Continuous Unidirectional Solidification Process

Journal

JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
Volume 28, Issue 10, Pages 6483-6491

Publisher

SPRINGER
DOI: 10.1007/s11665-019-04385-5

Keywords

continuous unidirectional solidification process; K418 alloy; mechanical properties; microstructure

Funding

  1. Natural Science Foundation of China [U1560202, 51604171, 51690162]
  2. National Science and Technology Major Project Aeroengine and Gas Turbine'' [2017-VII-0008-0102]
  3. Ministry of Science and Technology of China [2017YFB0405902]

Ask authors/readers for more resources

Adopting effective strategies to control the solidification structure of Ni-based superalloys is a very interesting subject for metallurgists. Despite the achievement of developing and applying the continuous unidirectional solidification process in simple alloys, the utilization of this process for K418 alloys has been ignored. The microstructure and mechanical properties of a K418 alloy ingot produced by the continuous unidirectional solidification process were investigated. We found that the gamma dendrites were typically cross-shaped in the transverse section. The orientation of surviving grains along the casting direction was during competitive growth. The secondary dendrite arm spacing was 32.3 +/- 2.5 mu m at a cooling rate of 1.75 +/- 0.35 degrees C/s from the surface to the center of the K418 alloy ingot. Due to the higher cooling rate than that of the conventional casting process, a more uniform microstructure and finer gamma ' precipitation were obtained in the ingot. Thus, compared with the conventional casting, the tensile strength and the elongation are increased by 8.4 and 21.3%, respectively, at 25 degrees C. The tensile strength and elongation increased by 15.2 and 49.3%, respectively, at 800 degrees C. In addition, the fracture surfaces exhibited numerous typical dimples and dendritic fracture characteristics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available