4.1 Article

Preparation and Characterization of Poly(Vinyl Alcohol) (PVA)/SiO2, PVA/Sulfosuccinic Acid (SSA) and PVA/SiO2/SSA Membranes: A Comparative Study

Journal

JOURNAL OF MACROMOLECULAR SCIENCE PART B-PHYSICS
Volume 59, Issue 3, Pages 157-181

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/00222348.2019.1697023

Keywords

Nanocomposite; membrane; poly(vinyl alcohol); silica; sulfosuccinic acid

Funding

  1. ERDF as part of the Ministry of Education, Youth and Sports OP RDI program [CZ.1.05/2.1.00/03.0088]
  2. CENTEM PLUS from the Ministry of Education, Youth and Sports under the National Sustainability Program I [LO1402]

Ask authors/readers for more resources

New organic-inorganic nanocomposites based on PVA, SiO2 and SSA were prepared in a single step using a solution casting method, with the aim to improve the thermomechanical properties and ionic conductivity of PVA membranes. The structure, morphology, and properties of these membranes were characterized by Raman spectroscopy, small- and wide-angle X-ray scattering (SAXS/WAXS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), water uptake (Wu) measurements and ionic conductivity measurements. The SAXS/WAXS analysis showed that the silica deposited in the form of small nanoparticles (similar to 10 nm) in the PVA composites and it also revealed an appreciable crystallinity of pristine PVA membrane and PVA/SiO2 membranes (decreasing with increasing silica loading), and an amorphous structure of PVA/SSA and PVA/SSA/SiO2 membranes with high SSA loadings. The thermal and mechanical stability of the nanocomposite membranes increased with the increasing silica loading, and silica also decreased the water uptake of membranes. As expected, the ionic conductivity increased with increasing content of the SSA crosslinker, which is a donor of the hydrophilic sulfonic groups. Some of the PVA/SSA/SiO2 membranes had a good balance between stability in aqueous environment (water uptake), thermomechanical stability and ionic conductivity and could be potential candidates for proton exchange membranes (PEM) in fuel cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available