4.5 Article

Prediction of sediment transport rates in gravel-bed rivers using Gaussian process regression

Journal

JOURNAL OF HYDROINFORMATICS
Volume 22, Issue 2, Pages 249-262

Publisher

IWA PUBLISHING
DOI: 10.2166/hydro.2019.077

Keywords

bed load; empirical methods; Gaussian process regression; sediment transport; support vector machine; total sediment load

Ask authors/readers for more resources

Estimating sediment transport rate in rivers has high importance due to the difficulties and costs associated with its measurement, which has drawn the attention of experts in water engineering. In this study, Gaussian process regression (GPR) is applied to predict the sediment transport rate for 19 gravel-bed rivers in the United States. To compare the performance of GPR, the support vector machine (SVM) as a common type of kernel-based models was developed. Model inputs of sediment transport were prepared based on two scenarios: the first scenario considers only hydraulic characteristics and the second scenario was formed using hydraulic and sediment properties. Obtained results revealed that the GPR models present better performance compared to the SVM models and other empirical sediment transport formulas. Also, it was found that incorporating the second scenario as input led to better predictions. In addition, performing sensitivity analysis showed that the ratio of average velocity to shear flow velocity is the most effective parameter in predicting the sediment transport rate of gravel-bed rivers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available