4.7 Article

Synthesis of metallic copper modified g-C3N4 by molecular self-assembly structure and its combined catalytic performance with activated sludge

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 388, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2019.121754

Keywords

g-C3N4; Copper modification; Photocatalysis; Activated sludge

Funding

  1. National Natural Science Foundation of China [21771061]

Ask authors/readers for more resources

Copper modified carbon nitride (CuCN) was prepared by a hydrothermal self-assembly reaction and following high temperature thermal polymerization process. Finally, the sample exhibits uniform one-dimensional tubular structure. Interestingly, the separation efficiency of electron-hole pair is improved, and more catalytic active sites are exposed due to the special hollow structure. Meanwhile, the presence of copper element narrows its band gap, leading to the enhancement of photocatalytic degradation performance under simulated sunlight. In addition, the effect of CuCN on dehydrogenase activity of activated sludge was determined by TTC reduction method. After adding CuCN-2, the activity of activated sludge reached 0.134 mu mol g(-1) min(-1), which indicated that the prepared CuCN-2 had good biocompatibility. It is suitable for both photocatalytic process and activated sludge treatment process. Therefore, the combination of photocatalytic technology and activated sludge process can further completely degrade organic pollutants. We found that CuCN could protect the survival and growth of microorganisms in activated sludge, so that the degradation efficiency of CuCN to nitrobenzene could reach 94.4 %. Therefore, CuCN has broad application prospects in photocatalytic-activated sludge combined treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available