4.7 Article

Mechanisms of electro-assisted persulfate/nano-Fe0 oxidation process: Roles of redox mediation by dissolved Fe

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 388, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2019.121739

Keywords

Persulfate; Nanosized zero-valent iron; Electrochemical oxidation; Sulfate radical

Funding

  1. Korea Ministry of Environment (MOE) [RE201901241]

Ask authors/readers for more resources

Mechanisms involved in an electrochemically assisted oxidation process using persulfate and nanosized zerovalent iron (NZVI) were elucidated. Initially, Fe-0 acted as a source of Fe2+ to activate the persulfate, then Fe2+/Fe3+ redox mediation between cathode and persulfate played a decisive role in persulfate activation at a current density low enough not to inhibit Fe-0 corrosion. An excessive current density which resulted in a low cathodic potential limited Fe-0 corrosion and therefore limited the supply of dissolved Fe to activate the persulfate. Direct oxidation of phenol at the anode therefore became more important under the excessive current density than oxidation by sulfate radicals. At a low current density, Fe-0 in the NZVI particles was completely transformed into iron (oxyhydr)oxides such as ferrihydrite, lepidocrocite, and magnetite. Fe-0 was transformed into Fe2+ little when the current density was high. Increasing the current density increased the energy cost by increasing the amount of electrical energy dissipated in side reactions that decreased sulfate radical formation. The results indicated that a low current density can generally be used to give a high reaction rate and a high energy efficiency and that a high current density can be used when the NZVI particles need to be preserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available