4.7 Article

Enhancing trehalose biosynthesis improves yield potential in marker-free transgenic rice under drought, saline, and sodic conditions

Journal

JOURNAL OF EXPERIMENTAL BOTANY
Volume 71, Issue 2, Pages 653-668

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jxb/erz462

Keywords

Drought; marker-free; metabolite; rice; salinity; sodicity; transgenic; trehalose; yield

Categories

Funding

  1. Department of Biotechnology, Government of India through ABSPII project
  2. ICAR-Central Soil Salinity Research Institute (CSSRI)

Ask authors/readers for more resources

Edaphic factors such as salinity, sodicity, and drought adversely affect crop productivity, either alone or in combination. Despite soil sodicity being reported as an increasing problem worldwide, limited efforts have been made to address this issue. In the present study, we aimed to generate rice with tolerance to sodicity in conjunction with tolerance to salinity and drought. Using a fusion gene from E. coli coding for trehalose-6-phosphate synthase/phosphatase (TPSP) under the control of an ABA-inducible promoter, we generated marker-free, high-yielding transgenic rice (in the IR64 background) that can tolerate high pH (similar to 9.9), high EC (similar to 10.0 dS m(-1)), and severe drought (30-35% soil moisture content). The transgenic plants retained higher relative water content (RWC), chlorophyll content, K+/Na* ratio, stomata! conductance, and photosynthetic efficiency compared to the wild-type under these stresses. Positive correlations between trehalose overproduction and high-yield parameters were observed under drought, saline, and sodic conditions. Metabolic profiling using GC-MS indicated that overproduction of trehalose in leaves differently modulated other metabolic switches, leading to significant changes in the levels of sugars, amino acids, and organic acids in transgenic plants under control and stress conditions. Our findings reveal a novel potential technological solution to tackle multiple stresses under changing climatic conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available