4.7 Article

Biochar alleviates Cd phytotoxicity by minimizing bioavailability and oxidative stress in pak choi (Brassica chinensis L.) cultivated in Cd-polluted soil

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 250, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2019.109500

Keywords

Rice-straw biochar; Pak choi; Gas exchange attributes; Antioxidants; Cd bioavailability; Soil remediation

Ask authors/readers for more resources

The production of leafy vegetables such as Brassica chinensis L. in cadmium (Cd)-polluted soil causes serious threats to human health and food safety around the globe. A pot culture was established to examine the efficacy of rice-straw induced biochar (applied to soil at the rate of 0%, 2.5% and 5%, w/w) on growth, gaseous exchange attributes, antioxidative capacities and Cd uptake in pak choi (Brassica chinensis L), when soil was spiked with Cd (CdCl2) at 0, 5, 10 and 20 mg kg(-1) soil. The results revealed that Cd stress significantly (P < 0.05) reduced plant biomass and physiological attributes, and accumulated higher Cd concentrations in plant tissues with the increasing rate of Cd concentration in the soil. However, incorporation of biochar at 5% application rate prominently increased the shoot (98.27%) and root (85.96%) dry biomass, net photosynthesis (45.52%), transpiration rate (161.34%), stomatal activity (111.76%) and intracellular CO2 concentration (32.25%) when Cd was added at 20 mg kg(-1) soil, relative to the respective treatment without biochar. Whereas, incorporation of biochar at 5% significantly reduced the bioavailable Cd by 16.64% under 20 mg kg(-1) soil, compared to respective Cd treatment without biochar.Similarly, Cd accumulation in shoots and roots was decreased by 42.49% and 29.23%, and thereby reduced leaf MDA and H2O2 contents by 21.45% and 31.28%, respectively, at 20 mg Cd kg(-1) spiked soil relative to without biochar amended soil. An increment was noticed in the activities of guaiacol peroxidase (POD), superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione (GSH) by 37.31%, 66.35%, 115.94%, 122.72% and 59.96%, respectively, with 5% biochar addition in 20 mg kg(-1) Cd spiked soil. Moreover, biochar induced a synergistic impact on plants by increasing soil alkalinization and thereby reducing Cd phytotoxicity throughimmobilization. Overall, results proposed that rice-straw biochar has an ability to restore Cd polluted soil and increased pak choi production and thereby reduced food security risks in polluted soil.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available