4.7 Article

Facile synthesis of ZnFe2O4@RGO nanocomposites towards photocatalytic ciprofloxacin degradation and H2 energy production

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 556, Issue -, Pages 667-679

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2019.08.109

Keywords

ZFO@RGO nanocomposites; Ciprofloxacin degradation; Hydrogen energy production

Ask authors/readers for more resources

The production of Hydrogen energy through the splitting of water is a promising pathway for clean environment and sustainability. Herein we have synthesized a series of ZnFe2O4 (ZFO)@Reduced Graphene Oxide (RGO) nanocomposites by hydrothermal followed by calcination method and studied its application towards hydrogen energy production and ciprofloxacin degradation. Powder X-ray diffraction (XRD) study and X-ray photoelectron spectroscopy (XPS) analysis indicate the good crystallinity and suitable chemical environment for the photocatalytic process. Among all the samples, ZFO@3%RGO showed 73.4% of CIP degradation under solar irradiation of 1 h, which is 1.67 times higher than that of pure ZFO nanoparticles. CIP degradation process follows first order kinetics with a good rate constant of 0.021 min(-1) which is 2.3 times greater than ZFO. The photocatalyst ZFO@3%RGO illustrated maximum H-2 energy production i.e. 410.32 mu mol/h, which is 1.35 times more than that of neat ZFO nanoparticles. ZFO@3%RGO demonstrates the highest photocurrent density of 0.6 mA/cm(2) under light illuminations, which is 250 times superior to that of the pristine photocatalyst. Bode phase analysis confirmed that ZFO@RGO shows 13 times higher charge separation efficiency in comparison to neat ZFO. The best photocatalytic activity of ZFO@3%RGO nanocomposite is due to its high light absorption capacity, low photogenerated exciton recombination, high electron-hole separation, and high photocurrent density. (C) 2019 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available