4.7 Article

Fine particle emission during fused deposition modelling and thermogravimetric analysis for various filaments

Journal

JOURNAL OF CLEANER PRODUCTION
Volume 237, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2019.117790

Keywords

3D printer; Fine particles; Fused deposition modelling; Emission; Printing materials; Filament

Funding

  1. EU [CZ.02.1.01/0.0/0.0/15_003/0000456, CZ.02.1.01/0.0/0.0/16_026/0008392]

Ask authors/readers for more resources

This paper discusses an experimental evaluation of fine particle emissions (16.5-583 nm) released by a three-dimensional printer from various printing materials. Fine particle emissions were identified for a three-dimensional printer that uses fused deposition modelling technology. A method for evaluation of fine particle emissions from printing materials was developed. This method allowed us to test twelve commonly available printing materials. Size distributions of the produced fine particles and their concentrations were observed for each printing material during the printing periods. The count median diameter of emitted particles ranged from 26 to 56 nm. Particle number concentrations in a closed cover of a three-dimensional printer ranged from 10(3)-10(6) particles/cm(3), depending on the particular printing material. Tested printing materials were then subjected to thermogravimetric analysis. This analysis provides detailed information about the emission of fine particles and mass loss of a sample of the material depending on the current temperature of the printing material. The study presents information about differences between particular printing materials in terms of the amount of emitted fine particles as well as the particle size distribution of the amount over time. The study also suggests that thermogravimetric analysis of materials can be used for estimation of particle emission that will occur during the printing process that is based on fused deposition modelling. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available