4.7 Article

On the relation between reorientation and diffusion in glass-forming ionic liquids with micro-heterogeneous structures

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 151, Issue 19, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.5128420

Keywords

-

Ask authors/readers for more resources

We investigate complex structure-dynamics relations in glass-forming ionic liquids comprising 1-alkyl-3-methylimidazolium cations and bis(trifluoromethylsulfonyl)imide anions. In doing so, we exploit the microheterogeneous structures emerging when the alkyl length is increased in the range n = 1-12 and use that H-1 and H-2 NMR give information about cation dynamics, while F-19 NMR reports on anion motions. Furthermore, we combine spin-lattice relaxation analysis, including field-cycling relaxometry, with stimulated-echo experiments to follow reorientation dynamics related to structural relaxation in wide dynamic ranges and we apply static field gradients to probe translational diffusion. The resulting correlation times tau and diffusion coefficients D show Vogel-Fulcher-Tammann temperature dependence. Moreover, they indicate a moderate slowdown of both cation and anion dynamics with increasing alkyl length n. However, the relative diffusivities of the ionic species depend on the cation size, where cations are more mobile for n < 6 and anions for n > 6. Finally, we relate rotational and translational motions in the framework of the Stokes-Einstein-Debye (SED) approach. We find that the SED relation is obeyed for anion dynamics in all samples, while it breaks down for cation dynamics when n is increased. The origin of this SED breakdown is shown to differ fundamentally from that reported previously for conventional glass formers. We argue that an emergence of cation clusters causes a retardation of cation diffusion relative to cation reorientation upon cooling, i.e., the studied ionic liquids show a complex interplay of structural and dynamical properties. Published under license by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available