4.7 Article

Superionic liquids in conducting nanoslits: A variety of phase transitions and ensuing charging behavior

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 151, Issue 18, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.5127851

Keywords

-

Funding

  1. ERC [FPTOpt-277998]
  2. EPSRC [EP/H004319/1] Funding Source: UKRI

Ask authors/readers for more resources

We develop a theory of charge storage in ultranarrow slitlike pores of nanostructured electrodes. Our analysis is based on the Blume-Capel model in an external field, which we solve analytically on a Bethe lattice. The obtained solutions allow us to explore the complete phase diagram of confined ionic liquids in terms of the key parameters characterizing the system, such as pore ionophilicity, interionic interaction energy, and voltage. The phase diagram includes the lines of first- and second-order, direct and re-entrant phase transitions, which are manifested by singularities in the corresponding capacitance-voltage plots. Testing our predictions experimentally requires monodisperse, conducting ultranarrow slit pores, to permit only one layer of ions, and thick pore walls, to prevent interionic interactions across the pore walls. However, some qualitative features, which distinguish the behavior of ionophilic and ionophobic pores and their underlying physics, may emerge in future experimental studies of more complex electrode structures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available