4.7 Article

Chemically accurate excitation energies with small basis sets

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 151, Issue 14, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.5122976

Keywords

-

Funding

  1. GENCI-TGCC [2018-A0040801738]
  2. CALMIP (Toulouse) [2019-18005]

Ask authors/readers for more resources

By combining extrapolated selected configuration interaction (sCI) energies obtained with the Configuration Interaction using a Perturbative Selection made Iteratively algorithm with the recently proposed short-range density-functional correction for basis-set incompleteness [E. Giner et al., J. Chem. Phys. 149, 194301 (2018)], we show that one can get chemically accurate vertical and adiabatic excitation energies with, typically, augmented double-zeta basis sets. We illustrate the present approach on various types of excited states (valence, Rydberg, and double excitations) in several small organic molecules (methylene, water, ammonia, carbon dimer, and ethylene). The present study clearly evidences that special care has to be taken with very diffuse excited states where the present correction does not catch the radial incompleteness of the one-electron basis set. Published under license by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available