4.7 Article

Enhanced thermal stability of InP quantum dots coated with Al-doped ZnS shell

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 151, Issue 14, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.5121619

Keywords

-

Funding

  1. National Research Foundation (NRF) - Korean Government [NRF-2017R1A2B2011066, NRF-2016M3A7B4910618]
  2. Industrial Strategic Technology Development Program - Ministry of Trade, Industry & Energy (MOTIE, Korea) [10077471]
  3. National Research Foundation of Korea [2016M3A7B4910618] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Colloidal InP quantum dots (QDs) have attracted a surge of interest as environmentally friendly light-emitters in downconversion liquid crystal displays and light-emitting diodes (LEDs). A ZnS shell on InP-based core QDs has helped achieve high photoluminescence (PL) quantum yield (QY) and stability. Yet, due to the difficulty in the growth of a thick ZnS shell without crystalline defects, InP-based core/shell QDs show inferior stability against QY drop compared to Cd chalcogenide precedents, e.g., CdSe/CdS core/thick-shell QDs. In this work, we demonstrate the synthesis of InP-based core/shell QDs coated with an Al-doped ZnS outer shell. QDs with an Al-doped shell exhibit remarkable improvement in thermal and air stability even when the shell thickness is below 2 nm, while the absorption and PL spectra, size, and crystal structure are nearly the same as the case of QDs with a pristine ZnS shell. X-ray photoelectron spectroscopy reveals that Al3+ in Al-doped QDs forms an Al-oxide layer at elevated temperature under ambient atmosphere. The as-formed Al-oxide layer blocks the access of external oxidative species penetrating into QDs and prevents QDs from oxidative degradation. We also trace the chemical pathway of the incorporation of Al3+ into ZnS lattice during the shell growth. Furthermore, we fabricate QD-LEDs using Al-doped and undoped QDs and compare the optoelectronic characteristics and stability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available