4.4 Article

Important Roles of Endothelium-Dependent Hyperpolarization in Coronary Microcirculation and Cardiac Diastolic Function in Mice

Journal

JOURNAL OF CARDIOVASCULAR PHARMACOLOGY
Volume 75, Issue 1, Pages 31-40

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/FJC.0000000000000763

Keywords

endothelium; endothelium-dependent hyperpolarization; coronary microcirculation; cardiac diastolic function; nitric oxide synthase

Funding

  1. Japanese Ministry of Education, Culture, Sports, Science, and Technology, Tokyo, Japan [16K19383]
  2. Grants-in-Aid for Scientific Research [16K19383] Funding Source: KAKEN

Ask authors/readers for more resources

Endothelium-dependent hyperpolarization (EDH) factor is one of endothelium-derived relaxing factors and plays important roles especially in microvessels. We have previously demonstrated that endothelium-derived hydrogen peroxide (H2O2) is an EDH factor produced by all types of nitric oxide synthases (NOSs), including endothelial NOS (eNOS), neuronal NOS (nNOS), and inducible NOS. Recent studies have suggested the association between coronary microvascular dysfunction and cardiac diastolic dysfunction. However, the role of EDH in this issue remains to be fully elucidated. We thus examined whether EDH plays an important role in coronary microcirculation and if so, whether endothelial dysfunction, especially impaired EDH, is involved in the pathogenesis of cardiac diastolic dysfunction in mice. Using a Langendorff-perfused heart experiment, we examined the increase in coronary flow in response to bradykinin in the presence of indomethacin and N-omega-nitro-l-arginine (EDH condition) in wild-type, eNOS-knockout (KO), and nNOS/eNOS-double-KO mice. Compared with wild-type mice, EDH-mediated relaxations were increased in eNOS-KO mice but were significantly reduced in n/eNOS-KO mice. Catalase, a specific H2O2 scavenger, markedly inhibited EDH-mediated relaxations in all 3 genotypes, indicating compensatory roles of nNOS-derived H2O2 as an EDH factor in coronary microcirculation. Although both eNOS-KO and n/eNOS-KO mice exhibited similar extents of cardiac morphological changes, only n/eNOS-KO mice exhibited cardiac diastolic dysfunction. The expression of oxidized protein kinase G I-alpha (PKGI alpha) in the heart was significantly increased in eNOS-KO mice compared with n/eNOS-KO mice. These results indicate that EDH/H2O2 plays important roles in maintaining coronary microcirculation and cardiac diastolic function through oxidative PKGI alpha activation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available