4.6 Article

Cryo-EM structure of the native rhodopsin dimer in nanodiscs

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 294, Issue 39, Pages 14215-14230

Publisher

ELSEVIER
DOI: 10.1074/jbc.RA119.010089

Keywords

G protein-coupled receptor (GPCR); receptor; rhodopsin; retinoid-binding protein; retina; cryo-electron microscopy (cryo-EM); rod outer segment; transmembrane helix 1 (TM1); helix 8 (H8); cell signaling; double electron-electron resonance (DEER); rhodopsin dimerization; transducin

Funding

  1. Allergan

Ask authors/readers for more resources

Imaging of rod photoreceptor outer-segment disc membranes by atomic force microscopy and cryo-electron tomography has revealed that the visual pigment rhodopsin, a prototypical class A G protein?coupled receptor (GPCR), can organize as rows of dimers. GPCR dimerization and oligomerization offer possibilities for allosteric regulation of GPCR activity, but the detailed structures and mechanism remain elusive. In this investigation, we made use of the high rhodopsin density in the native disc membranes and of a bifunctional cross-linker that preserves the native rhodopsin arrangement by covalently tethering rhodopsins via Lys residue side chains. We purified cross-linked rhodopsin dimers and reconstituted them into nanodiscs for cryo-EM analysis. We present cryo-EM structures of the cross-linked rhodopsin dimer as well as a rhodopsin dimer reconstituted into nanodiscs from purified monomers. We demonstrate the presence of a preferential 2-fold symmetrical dimerization interface mediated by transmembrane helix 1 and the cytoplasmic helix 8 of rhodopsin. We confirmed this dimer interface by double electron?electron resonance measurements of spin-labeled rhodopsin. We propose that this interface and the arrangement of two protomers is a prerequisite for the formation of the observed rows of dimers. We anticipate that the approach outlined here could be extended to other GPCRs or membrane receptors to better understand specific receptor dimerization mechanisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available