4.7 Article

Design on hierarchical P doped Ni(OH)2@Ni-Co LDH core-shell heterojunction as an advanced battery-like electrode for high performance hybrid supercapacitors

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 817, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2019.152712

Keywords

P doped Ni(OH)(2) rods; Ni-Co LDH nanoflakes; Core-shell heterojunction; Hybrid supercapacitor

Funding

  1. National Natural Science Foundation of China [51872002, 21771001]
  2. Anhui Provincial Natural Science Foundation, China [1708085ME120]
  3. Key Natural Science Research Project of Anhui Provincial Education Department, China [KJ2018A0025, KJ2017A007]
  4. AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key lab of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences [PECL2018KF004]

Ask authors/readers for more resources

Designing reasonable composited material with optimized structures for high-performance electrodes have aroused widespread concern. Herein, we report a P doped Ni(OH)(2)@Ni-Co LDH arrays with core-shell hierarchical structure are in-situ grown on the 3D Ni foam (PNH@N-C LDH/NF). Benefiting from this unique core-shell heterojunction and the synergetic effect inducing by hexagon-like P doped Ni(OH)(2)(PNH) rods with ultrathin N-C LDH nanoflakes, the tremendous areal specific capacitance of the binder-free electrode is about 6.05 C cm(-2) at 1 mA cm(-2), which is nearly 3.8 folds of the PNH/NF (1.59 C cm(-2)) electrode. And the electrode presents an extra-long cycle life (124% remained after 10000 cycles). Additionally, PNH@N-C LDH cathode, activated carbon anode with PVA/LiOH gel electrolyte are assembled to an all-solid-state hybrid supercapacitor (AHS). Meanwhile, the obtained AHS also exhibits an excellent energy density of 0.323 mWh cm(-2) (power density is 1.6 mW cm(-2)) and outstanding cycling stability (87.9% initial capacitance after 4500 cycles). Moreover, the two AHS (each about 1 cm(-2)) can easily light up three LEDs for 10 min. In our study, the general, cost-effective, and eco-friendly synthesis process of PNH@N-C LDH is provided an attainable strategy to prepare promising self-supporting electrode for the potential applications in the future of electronic equipments. (C) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available