4.7 Article

Oxidative DNA Cleavage, Formation of μ-1,1-Hydroperoxo Species, and Cytotoxicity of Dicopper(II) Complex Supported by a p-Cresol-Derived Amide-Tether Ligand

Journal

INORGANIC CHEMISTRY
Volume 58, Issue 21, Pages 14294-14298

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.9b02093

Keywords

-

Funding

  1. MEXT-Supported Program of the Strategic Research Foundation at Private University

Ask authors/readers for more resources

Metal complexes to promote oxidative DNA cleavage by H2O2 are desirable as anticancer drugs. A dicopper(II) complex of known p-cresol-derived methylene-tether ligand Hbcc [Cu-2(bcc)](3+) did not promote DNA cleavage by H2O2. Here, we synthesized a new p-cresol-derived amide-tether one, 2,6-bis(1,4,7,10-tetrazacyclododecyl-1-carboxyamide)-p-cresol (Hbcamide). A dicopper(II) complex of the new ligand [Cu-2(mu-OH)(bcamide)](2+) was structurally characterized. This complex promoted the oxidative cleavage of supercoiled plasmid pUC19 DNA (Form I) with H2O2 at pH 6.0-8.2 to give Forms II and III. The reaction was largely accelerated in a high pH region. A mu-1,1-hydroperoxo species was formed as the active species and spectroscopically identified. The amide-tether complex is more effective in cytotoxicity against HeLa cells than the methylene-tether one.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available