4.8 Article

A shear-thinning hydrogel that extends in vivo bioactivity of FGF2

Journal

BIOMATERIALS
Volume 111, Issue -, Pages 80-89

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2016.09.026

Keywords

Injectable hydrogel; Nanoparticle; Heparin-binding protein; Regenerative medicine; Controlled release; Angiogenesis

Funding

  1. University of Pittsburgh

Ask authors/readers for more resources

We designed and tested a versatile hydrogel for tissue regeneration by preserving the bioactivity of growth factors. The shear-thinning gel self-assembles within 1 min from heparin and Laponite-a silicate nanoparticle, thus the name HELP gel. By not covalently modifying heparin, it should retain its natural affinity towards many proteins anchored in the extracellular matrix. In principle, HELP gel can bind any heparin-binding growth factor; we use fibroblast growth factor-2 (FGF2) in this study to demonstrate its utility. Heparin in the gel protects FGF2 from proteolytic degradation and allows it to be released over time with preserved bioactivity. FGF2 released from subcutaneously injected gel induces strong angiogenesis in a mouse model. The hydrogel degrades completely in vivo in 8 weeks with or without growth factors, eliciting mild inflammatory response but having little impacts on the surrounding tissue. The ease of preparation and scale-up makes this protein delivery platform attractive for clinical translation. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available