4.3 Article

A novel heterozygous intron mutation in SEMA7A causing kallmann syndrome in a female

Journal

GYNECOLOGICAL ENDOCRINOLOGY
Volume 36, Issue 3, Pages 218-221

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/09513590.2019.1680624

Keywords

Kallmann syndrome; SEMA7A; intron mutation; hyposmia; hypogonadotropic hypogonadism

Funding

  1. National Natural Science Foundation of China [81770809]

Ask authors/readers for more resources

Kallmann syndrome (KS) is a rare inherited disorder, which has significantly genotypic and phenotypic heterogeneity. KS is clinically characterized by the combination of hypogonadotropic hypogonadism and hypo/anosmia. At present, there is no relevant report that intron mutation in SEMA7A gene helps induce KS. A 17-year-old Chinese female (46, XX) came to our department due to primary amenorrhea, who actually had hyposmia since her childhood. Hypogonadotropic hypogonadism was then detected. Luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels were remarkably low. And estradiol level was extremely low. The laboratory test results were consistent with KS. A heterozygous point mutation of intron 13 in SEMA7A (NM_003612.3:c.1640-3C > A) was identified. The patient received the treatment of pulsatile gonadotropin-releasing hormone (GnRH) pump, which could imitate physiological ovarian stimulation, thus resulting in mature follicle and a peak of LH. The patient was injected subcutaneously every 90 min with a dose of 10 mu g per pulse, which had bona efficacy. She acquired menarche at about 43 days after the treatment. We firstly report a case of KS caused by a novel mutation site in the intron of SEMA7A gene. We mainly provide insight into the clinical manifestations, genetic diagnosis and treatment of KS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available