4.7 Article

Benzene promotes microbial Fe(III) reduction and flavins secretion

Journal

GEOCHIMICA ET COSMOCHIMICA ACTA
Volume 264, Issue -, Pages 92-104

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2019.08.013

Keywords

Monocyclic aromatic compounds; Subsurface; Fe(III) reduction; Flavins

Funding

  1. National Natural Science Foundation of China [41830862, 41672353, 41521001, 41772363, 41630318]
  2. Applied Science and Technology Research and Development Project of Guangdong Province, China [2016B020240008]

Ask authors/readers for more resources

The microbial reduction of Fe(III) (oxyhydr)oxide is widespread in subsurface and plays a critical role in both the biogeo-chemical cycle of iron and the fate of contaminants. Monocyclic aromatic compounds are ubiquitous constituents of organic matter in many geologic environments and contaminated subsurface. Benzene is a typical monocyclic aromatic compound and frequently occurs in the subsurface environment. Due to its carcinogenicity and cytotoxicity, benzene may be toxic to the coexisted Fe(III)-reducing bacteria and thereby inhibit the microbial Fe(III) reduction. However, there is limited knowledge about the impact of the coexisting monocyclic aromatic compounds on the microbial Fe(III) reduction. In this study, the reduction of ferrihydrite by the dissimilatory iron-reducing bacterium Shewanella oneidensis MR-1 (MR-1) was investigated in the presence of benzene. Results showed that benzene had a negligible impact on the growth, cell morphology and integrity of MR-1, but it promoted the microbial Fe(III) reduction. The promotion of microbial Fe(III) reduction is maximum at benzene concentration of 3.8 mu M. In the presence of 3.8 mu M benzene, the produced Fe(II) from microbial Fe(III) reduction in 60 h doubled that in the absence of benzene, and the Fe(II)-O content of mineral surface after reduction experiment increased 4.73%. The promotion of microbial Fe(III) reduction was ascribed to the benzene induced increase of cell membrane permeability, which facilitated extracellular electron transfer and the secretion and release of flavin mononucleotide (FMN) as electron shuttle or cofactor. The impacts of benzene on the FMN secretion and microbial Fe(III) reduction have broad implications for both the cycling of iron and the biogeochemical transformation of redox-sensitive elements and contaminants in the benzene-containing subsurface environments. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available